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1. TIonbroduction,

A necessary attribute of any real control system is that it

be stable under perturbations, and the oldest method of designing
feedback control systems is based upon making the desired state
agymptotically stable in the linear approximation. This dates back
to J. C. Maxwelll in 1868 and J. Vyshnegradsk112 in 1876. In more
recent optimal control théor&xit is well known for infinite time
optimal control that the desired state will be asymptotically stable
if the integrand of the performance functional is positive definite.
Examples are also known of some special control systems, which
reduce the error in control to zero in finite time, that have 2
"strong s’ca‘bility".5 In general, however, there is very little
known about stability under perturbations of optimal control systems
particularly when the control is over a finite period of time and
the control as a function of the state of the system has discontinu-
ities. Systems which are designed to reduce the‘error in control
%o zero in minimum time behave badly (e.g., chattering) when the
error is small due to time delays in switching and other perturba--
tions. Thus near the desired state the system ig often designed

to switch from optimal control to line }i?ntrol.
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In this paper, results are presented which indicate that con-
siderable improvement in performance can be expected by designing the
system to be time optimal to a small neighborhood of the desired state
rather than designing it to be optimal to the desired state itself,

We restrict ourselves here to normal sutonomous linear time optimal
confrol systemsl‘L with the objective to reach a small ball around

the origin (to achieve a small error in control) in minimum time. We
are then able td show that this time optimal control has a strong
stability under perturbations and is.in a certain sense the "Dbest"

of a1l "stabilizing controls".5

The theory indicates thé advantages ofbthis time optimal
control should be that l) the neighborhood where the optimal con-
trol behaves badly should be smaller, 2) the time to reach this
neighborhood is a minimum, 3) outside the neighborhood the stability
under perturbations is stronger, and M) the computation of -optimal

control is easier because of the additional transversality condition.

2. Optimality.
The mathematical model for the control system is (% = EE)

% = Ax + Bu (1)

where the state of system x 1s an n-vector, u is the control
function and is an r-vector, A is a constant n X n matrix, and

B is a consbant n X r matrix. We congider first of all the class



Q of admissible open loop controls w(t) with the property that

u 1is measurable on finite intervals of [0,®) and is limited in

magnitude by ]ui(t)| £1, i=1,...,r. The target is the ball

B= {x; |x| £ €] of radius e about the origin and 8= (x; |x| = €}.

We assume that the system is normal, which implies that the time

optimal control to hit @ is for each initial state x(0) = x°

unigque and bang—bang.lL
Let T(x)(x £ 8) be the minimum time to go from x to

B and define X(t) = {x;

)

T(x) = t}, t 2 0.  The set 2(t) is an

isochrone, It is then not difficult to see that

i) 2(t) is the boundary of a strictly convex compact set
oA(t) for each t > 0.
ii) 1f x° € Y(t) and the optimal control from x_ to 2
hits 4 at v, then v'iA# is an outward normal to
oAt) at x° and Y(t) ‘is differentiable at x° (hes

a unigue support hyperplane at xo).

It can then be shown that -

Theorem 1. On its domain of definition T(XO) is continuously

differentiable.

5. trong Stability.
We want to define now as large a clagss @ cof admissible
feedback controls ¢(x) as we can which satisfy Imi(x)[ £ 1 for

i=1...,r. Since for x® outside D = U (%), there is no

>0



admissible (open loop) control wu(t) that brings (1) within D,
we confine ourselves to D. We will say that ® €9 if in some
sense there is for each x € D a uniquely defined solution x(%)

of

X = AX + BIP(X) (2)

for each x° e D for as long as x(t) e D (t > 0) and which is

such that u(t) = ¢(x(t)) 1is an admissible open loop control (u € Q).
The time optimal feedback control w*(x) obtained by synthesgizing the
optimal open loop control u*(t) is clearly an optimal feedback
control, It is then rather éésy‘to show, from the above, that this

optimal control has the following strong stability property.

Up to now we have suppressed dependence on e. Taking this
into account we replace &%Ktl) by of(t,,€) and by  B(e).

Congider the perturbed system

X = Ax + Bp¥(x) + p(%,x). (3)

Then

Theorem 2, Given t, >0 and € >0 there exists p(tl,e) such that

1
if |p(t,x)| = p; < p(ty,€) for all t e [0,%) andall xe (t,¢),

then for some T(pl) each solution of (3) starting in .&%{tl,e)

reaches Z(e) in time less than T(pl).'




As with an asymptotically stable'equilibrium it can happen
that p(ty,€) >0 as € -0, Howevér, here the time to reach
%(e) approaches t, as €-0 and jﬂ(tl,O) - &%(tl,e) for
all € > 0. For a normal system _Q%(tl,o), the attainable set to
the origin in time tl’ is strictly convex (and hence‘contains the
origin in its interior) but its boundary will, in general, not be
smooth.

The general principle behind this result on strong stability
applies to much more general situations and we have presented here

the simplest possible case.
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